Euclid’s Algorithm
Recently I’ve started to implement (or reimplement) the most common algorithms a software developer should know . One of the nicest books I found on this topic is Algorithms in C (Robert Sedgewick) .
Of course, there is this and this, but lately I am more interested on the “implementation” side of things than on maths and theory .
Algorithm Description
Euclid’s Algorithm is an efficient method for calculating the greatest common divisor of two numbers (aka GCD) . The GCD of two numbers is considered the largest number that divides both of them (without leaving a reminder) .
Euclid’s algorithm is based on the principle that given two numbers a
and b
, if a
is greater than b
than the greatest common divisor of a
and b
is the same with the common divisor of b
and (b - a)
.
If we transform the above property into “code” (pseudo-code) the algorithm looks like this:
FUNCTION GCD(num1, num2)
WHILE num1 > 0
IF num1 < num2
SWAP (num1, num2)
num1 := num1 - num2
RETURN num2
The above pseudo-code is called the subtraction-variant . We can of course replace the repetitive subtractions with one division .
The division-based version looks like this (pseudo-code):
FUNCTION GCD(num1, num2)
WHILE num1 > 0
tmp := num1
num1 := num2 MOD num1
num2 := tmp
RETURN num2
There is also a recursive version of the algorithm:
FUNCTION GCD(num1, num2)
IF num1 <> 0 THEN
RETURN GCD(num2 MOD num1, num1)
RETURN num2
Algorithm Implementation
For this implementation I’ve written 4 functions that do the same thing (calculate the greatest common divisor) but in a slightly different manner:
Method | Description |
---|---|
int gcd1(a, b) |
The naive implementation, using repeated subtractions. |
int gcd2(a, b) |
Uses division instead of repeated subtractions. |
int gcd3(a, b) |
Alternative implementation using a for loop. |
int gcd4(a, b) |
The recursive version. |
Code:
#include <stdio.h>
#include <stdlib.h>
//
// @author Andrei Ciobanu
// @date DEC 11, 2010
//
int gcd1(int num1, int num2);
int gcd2(int num1, int num2);
int gcd3(int num1, int num2);
int gcd4(int num1, int num2);
//
// Calculates the greatest common divisor .
// @param num1
// @param num2
// @return The greatest common divisor of num1 and num2
//
int gcd1(int num1,int num2)
{
int tmp;
while(num1 > 0) {
if (num1 < num2) {
// Swap
tmp = num1;
num1 = num2;
num2 = tmp;
}
num1 -= num2;
}
return num2;
}
//
// Calculates the greatest common divisor . (Instead of using multiple
// substractions we use division)
// @param num1
// @param num2
// @return The greatest common divisor of num1 and num2
//
int gcd2(int num1, int num2)
{
int tmp;
while (num1 > 0) {
tmp = num1;
num1 = num2 % num1;
num2 = tmp;
}
return num2;
}
//
// Calculates the greatest common divisor . (The same as gcd2 but instead
// using a FOR loop)
// @param num1
// @param num2
// @return The greatest common divisor of num1 and num2
//
int gcd3(int num1, int num2)
{
int tmp;
for(num1 = abs(num1), num2 = abs(num2); num1 > 0; tmp = num1,
num1 = num2 % num1, num2 = tmp);
return num2;
}
//
// Calculates the greatest common divisor . (Recursive way)
// @param num1
// @param num2
// @return The greatest common divisor of num1 and num2
//
int gcd4(int num1, int num2)
{
if (num1) {
return gcd4(num2 % num1, num1);
}
return num2;
}
int main(int argc, char *argv[])
{
printf("gcd1(%u, %u) = %u\n", 10, 25, gcd1(10, 25));
printf("gcd1(%u, %u) = %u\n", 100, 24, gcd1(100, 24));
printf("gcd2(%u, %u) = %u\n", 10, 25, gcd2(10, 25));
printf("gcd2(%u, %u) = %u\n", 100, 24, gcd2(100, 24));
printf("gcd3(%u, %u) = %u\n", 10, 25, gcd3(10, 25));
printf("gcd3(%u, %u) = %u\n", 100, 24, gcd3(100, 24));
printf("gcd4(%u, %u) = %u\n", 10, 25, gcd4(10, 25));
printf("gcd4(%u, %u) = %u\n", 100, 24, gcd4(100, 24));
return (0);
}
Output:
gcd(10, 25) = 5
gcd(100, 24) = 4
gcd2(10, 25) = 5
gcd2(100, 24) = 4
gcd3(10, 25) = 5
gcd3(100, 24) = 4
gcd4(10, 25) = 5
gcd4(100, 24) = 4
Note:
If you are interested to read about a more performance-wise way to find the greatest common divisor of two numbers you can read this article on Stein’s Algorithm .
Comments